Discussion 14 Worksheet Spherical coordinates and general changes of variables

Date: 10/20/2021
MATH 53 Multivariable Calculus

1 Spherical coordinates

1. Solve for ρ, ϕ, θ in terms of x, y, z. That is, find the inverse of the spherical coordinate mapping. Warning: you may need casework.
2. Describe the following surfaces (defined by Cartesian coordinates) in terms of spherical coordinates).

$$
\begin{aligned}
& x=\sqrt{3} y \\
& z^{2}=x^{2}+y^{2} \\
& x^{2}+y^{2}+z^{2} / 4=1
\end{aligned}
$$

3. Find the volume of the region bounded by the sphere $x^{2}+y^{2}+z^{2}=4$ and the plane $z=1$.
4. Compute the following integral over the region R lying above the cone $z^{2}=x^{2}+y^{2}$ and below the unit sphere

$$
\iiint_{R} z^{2} d V
$$

5. Let d be a real number and consider the improper integral

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{-\sqrt{1-x^{2}-y^{2}}}^{\sqrt{1-x^{2}-y^{2}}} \frac{d z d y d x}{\left(x^{2}+y^{2}+z^{2}\right)^{d}}
$$

For which values of d does this integral converge? Compute the integral for the values of d that make it converge.
Hint: As a first step, check that the region of integration is a sphere.

2 Calculating the Jacobian

Find the absolute value of the Jacobian determinant for each of the following changes of coordinates.

1. $x=a u+b v$ and $y=c u+d v$.
2. $x=u^{2}-v^{2}$ and $y=2 u v$.
3. $x=e^{u} \cos (v)$ and $y=e^{u} \sin (v)$.
4. $x=\frac{u}{u^{2}+v^{2}}$ and $y=\frac{-v}{u^{2}+v^{2}}$. Note that this transformation is its own inverse, in the sense that we can solve $u=\frac{x}{x^{2}+y^{2}}$ and $v=\frac{-y}{x^{2}+y^{2}}$. Also check that $\left(x^{2}+y^{2}\right)\left(u^{2}+v^{2}\right)=1$.

3 Integrating with change of variables

1. Consider the region \mathcal{R} in the plane: $3 x^{2}+4 x y+3 y^{2} \leq 1$.

Describe the transformed region using the change of variables $x=v-u$ and $y=u+v$. Find the area of \mathcal{R}.
2. Let D be the annulus $1 \leq x^{2}+y^{2} \leq 4$ and consider the integral

$$
\iint_{D} \frac{1}{\left(x^{2}+y^{2}\right)^{2}} e^{\frac{x}{x^{2}+y^{2}}} d x d y
$$

Perform the change of variables $x=\frac{u}{u^{2}+v^{2}}, y=\frac{-v}{u^{2}+v^{2}}$ to simplify the integral, but do not evaluate.

4 True/False

Supply convincing reasoning for your answer.
(a) T F If the Jacobian of a transformation $x=x(u, v), y=y(u, v)$ is always non-zero, then the transformation is one-to-one.
(b) T F The image of a rectangle in the plane under the transformation $x=2 u, y=-2 v$ will be another rectangle.
(c) T F There is a point with spherical coordinates $\rho=1 / 2, \phi=3 \pi / 2, \theta=\pi / 2$.
(d) T F The " ρ " in spherical coordinates equals the " r " in cylindrical coordinates.

Note: These problems are taken from the worksheets for Math 53 in the Spring of 2021 with Prof. Stankova.

